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Abstract

Harmonic mappings between two Riemannian manifolds is an object of extensive study,

due to their wide applications in mathematics, science and engineering. Proving the

existence of such mappings is challenging because of the non-linear nature of the cor-

responding partial differential equations. This thesis is an exposition of a theorem by

Eells and Sampson, which states that any given map from a Riemannian manifold to a

Riemannian manifold with non-positive sectional curvature can be freely homotoped to

a harmonic map. In particular, this proves the existence of harmonic maps between such

manifolds. The technique used for the proof is the heat-flow method.
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Chapter 1

Harmonic Mappings

In this chapter we define and discuss harmonic mappings. Let (M, g) and (N, h) be m

and n dimensional Riemannian manifolds, and let u denote a smooth map from M to

N , i.e. u ∈ C∞(M, N). A natural question to ask is: what is the ‘least expanding’ map

from M to N? In order to make precise what we mean by ‘least expanding’ map here,

we need to analyze the space of maps C∞(M, N). In the sections that follow, we do this

analysis and define an energy of maps on this space. A harmonic map will be a critical

point of this energy as discussed later.

1.1 Space of Maps

Let TxM denote the tangent space of M and let TxM
∗ be the dual space of this tan-

gent space. We know that u ∈ C∞(M, N) implies that dux is a linear map from

TxM to Tu(x)N , i.e. dux ∈ Hom(TxM, Tu(x)N). We want to find a metric on

Hom(TxM, Tu(x)N) so that we can define energy of maps. We first prove a lemma.

Lemma 1.1.1. TxM ∼= TxM
∗. The isomorphism is linear and induces a metric on

TxM
∗.
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Proof. The Riemannian metric g induces a natural linear isomorphism between TxM

and its dual TxM
∗ defined as follows. Let Xx =

∑m
i=0 X i(x)( ∂

∂xi )x ∈ TxM and wx =
∑m

i=0 wi(x)(dxi)x ∈ TxM
∗. Define ♭ : TxM → TxM and ♯ : TxM

∗ → TxM

X♭
x =

m
∑

i=1

(

m
∑

i=1

gij(x)Xj(x))(dxi)x, (1.1)

w♯ =
m
∑

i=1

(
m
∑

i=1

gij(x)wj(x))(
∂

∂xi
)x. (1.2)

Clearly ♯ and ♭ are linear. Also it can be verified that they are inverse of each other

resulting in a linear isomorphism between TxM and TxM
∗. Now we define a metric g∗

x

on TxM
∗ by

g∗
x(wx, θx) = gx(w

♯
x, θ

♯
x) for wx, θx ∈ TxM

∗. (1.3)

This bilinear form g∗
x is a metric due to linearity of ♯. We can also get g∗

x((d
i
x)x, (d

j
x)x) =

gij
x where (gij) denotes the matrix inverse of g = (gij).

Proposition 1.1.2. Hom(TxM, Tu(x)N) ∼= TxM
∗ ⊗ Tu(x)N .

Proof. For every f ∈ Hom(TxM, Tu(x)N) we associate a bilinear map f † ∈ TxM
∗ ⊗

Tu(x)N by defining

f †(V, w) = w(f(V )), ∀V ∈ TxM, w ∈ Tu(x)N
∗. (1.4)

We can see that, given such a bilinear map, we can also associate with it a linear map in

Hom(TxM, Tu(x)).

We know that dux ∈ Hom(TxM, Tu(x)N) is represented in local coordinates by

dux

((

∂

∂xi

))

=
m
∑

α=1

(

∂uα

∂xi

)

(x)

(

∂

∂yα

)

u(x)

. (1.5)
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Since the basis for TxM
∗ ⊗ Tu(x)N is given by

(dxi)x ⊗ (
∂

∂yα
)u(x), (1.6)

dux is represented by

dux =

m
∑

i=1

n
∑

α=1

(

∂uα

∂xi

)

(x)(dxi)x ⊗

(

∂

∂yα

)

u(x)

. (1.7)

We proved that gij is an inner product on TxM
∗. Also hu(x) is the induced inner

product in Tu(x). These two inner products induce an inner product on TxM
∗ ⊗ Tu(x)N

given by

〈

(dxi)x ⊗

(

∂

∂yα

)

u(x)

, (dxj)x ⊗

(

∂

∂yβ

)

u(x)

〉

= gijhαβ(u(x)). (1.8)

Since this inner product is defined everywhere on M , we define an inner product on

sections by setting

〈σ, σ′〉(x) = 〈σ(x), σ′(x)〉x, for x ∈ M ; σ, σ′ ∈ Γ(T ∗M ⊗ u−1TN). (1.9)

With this inner product, we define a norm on dux given by

|du|2 =

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(u)

(

∂uα

∂xi

)(

∂uβ

∂xj

)

. (1.10)

With this norm defined on Hom(TM, TN), we now define the energy density of a map.

Definition 1.1.1. Given u ∈ C∞(M, N), the energy density function of u is defined as

e(u)(x) =
1

2
|du|2 (x), x ∈ M. (1.11)
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Definition 1.1.2. Let (M, g) be a compact Riemannian manifold. Given u ∈

C∞(M, N), the energy or harmonic energy of u is defined as

E(u) =

∫

M

e(u)dµg =

∫

M

1

2
|dµg|. (1.12)

The energy density of u can be interpreted in a following way. Let {e1, ..., em}, and

{e′1, ..., e
′
n} be orthonormal bases with respect to gx and hu(x), for tangent spaces TxM

and Tu(x)N , respectively. We express dux in these bases as

dux(ei) =
n
∑

α=1

λα
i e′α, i = 1, ..., m. (1.13)

Then, we get

|du|2(x) =

m
∑

i=1

n
∑

α=1

(λα
i )2. (1.14)

Consequently, we can regard the energy density functional e(u)(x) as the ‘rate of expan-

sion’ of the differential dux : TxM → Tu(x)N of u at x ∈ M . This is why we call e(ux)

‘energy density’ of the map.

Thus the energy E(u) is defined for each u ∈ C∞(M, N). The energy of maps E

can be regarded as a functional E : C∞(M, N) → R, and we want to find maps which

are critical points of this functional E.

1.2 Connections in the Space of Maps

Having introduced an inner product and norm for u ∈ Hom(M, N) i.e. on Γ(TM∗ ⊗

u−1TN) we want to know what is the effect on energy if the map u is changed by a

small amount. In other words, we want to be able to take directional derivatives in the
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space Γ(TM∗⊗u−1TN). To do that, we develop the notion of connection for this space.

First, we develop connections for TM∗ and u−1TN .

Let ∇ denote the Levi-Civita connection of M which gives us a map

∇ : Γ(TM) → Γ(TM∗ ⊗ TN) (1.15)

which assigns a tensor field ∇Y ∈ Γ(TM∗ ⊗ TM) of type (1, 1) to Y ∈ Γ(TM), a

(0, 1) tensor field. ∇Y is the covariant differential of Y . Let ♯ and ♭ be the isomorphisms

between TM and TM∗ given in (1.1) and (1.2). We can define a connection ∇∗ in TM∗

by setting

∇∗
Xw(Y ) = (∇Xw♯)♭(Y ), Y ∈ Γ(TM), w ∈ Γ(TM∗) (1.16)

= gx(∇Xw♯, Y ) (1.17)

= X(gx(w
♯, Y )) − gx(w

♯,∇XY ) by compatibility of ∇ (1.18)

= Xw(Y ) − w(∇XY ) (1.19)

which could also serve as an alternate definition for the connection ∇∗ and also explains

that the connection ∇∗ on TM∗ and connection ∇ on TM can be regarded as dual to

each other.

Because of the compatibility of ∇ with gij, we can see that the connection ∇∗ is

compatible with the metric gij on TM∗ by the following computation.

Lemma 1.2.1. Xg∗(w, θ) = g∗(∇∗
Xw, θ) + g∗(w,∇∗

X , θ).
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Proof.

RHS = g((∇∗
Xw)♯, θ♯) + g(w♯, (∇∗

Xθ)♯) (1.20)

= g(∇Xw♯, θ♯) + g(w♯,∇Xθ♯) (1.21)

= Xw(θ♯) = LHS (1.22)

Thus ∇∗ is a Riemannian connection. Now that we have introduced the connection

∇∗ in TM∗, what are the connection coefficients? We use (1.19) to do the computation.

(∇∗
∂

∂xj
dxk)(

∂

∂xl
) =

∂

∂xj
dxk(

∂

∂xl
) − dxk(∇( ∂

∂xj )

∂

∂xl
) (1.23)

=
∂

∂xj
δk
l − Γk

jl (1.24)

= −Γk
jl (1.25)

Thus we get an expression for ∇∗ as

∇∗
∂

∂xi

dxk = −
m
∑

j=1

Γk
ijdxj , 1 ≤ i, k ≤ m. (1.26)

We note that the connection coefficients of ∇∗ induced in TM∗ from ∇ are negative of

the connection coefficients of ∇.

Now consider the tangent bundle u−1TN ⊂ TM induced from TN by the map

u : M → N . At each point x,

{(

∂

∂y1
◦ u

)

(x), ...,

(

∂

∂yn
◦ u

)

(x)

}

(1.27)
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gives rise to a base for the fiber Tu(x)N of u−1TN over x. We introduce a connection

′∇ in u−1TM from the connection ∇′ in TN by defining

(

′∇ ∂

∂xi

∂

∂yγ
◦ u

)

(x) = ∇′
dux( ∂

∂xi )x

∂

∂yγ
. (1.28)

If Γ′α
βγ are the connection coefficients for the connection ∇′ on TN , then from (1.27)

and (1.28), we get

(

′∇ ∂

∂xi

∂

∂yγ
◦ u

)

(x) =

n
∑

α=1

(

n
∑

β=1

∂uβ

∂xi
(x)Γ′α

βγ(u(x))

)

(

∂

∂yα
◦ u

)

(1.29)

namely, ′∇ is a linear connection in u−1TN with the connection coefficients given by

{

n
∑

β=1

∂uβ

∂xi
Γ′α

βγ(u)|1 ≤ i ≤ m, 1 ≤ α, γ ≤ n

}

. (1.30)

We call this ′∇ the induced connection in u−1TN . Also if h ∈ Γ(TN ⊗TN) is a metric

in TN , then u∗h = hu(x)x∈M
defines a fiber metric in u−1TN . We check if the induced

connection ′∇ is compatible with the induced metric u∗h.

∇ ∂

∂xi
hαβ(u) =′ ∇ ∂

∂xi
u∗h

(

∂

∂yα
◦ u,

∂

∂yβ
◦ u

)

(1.31)

= ∇′

(du( ∂

∂xi ))h

(

∂

∂yα
◦ u,

∂

∂yβ
◦ u

)

(1.32)

=
∑

γ

∂uγ

∂xi
∇′

∂

∂yi

hαβ ◦ u (1.33)

= 0 by compatibility of ∇′ with h (1.34)

Now we have connections, ∇∗ in TM∗ and ′∇ in u−1TN , using these two, we introduce

a connection on TM∗ ⊗ u−1TN in a following way.
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Let w ∈ TM∗, W ∈ u−1TN and X ∈ TM . We define,

∇X(w ⊗ W ) = (∇∗w) ⊗ W + w ⊗ (′∇XW ), X ∈ Γ(TM) (1.35)

Linearity is clear. Also,

∇X(fw ⊗ W ) = (∇∗
Xfw) ⊗ W + w ⊗ (′∇XfW ) (1.36)

= (X(f)w + f∇∗
Xw) ⊗ W + fw ⊗ (′∇XW ) (1.37)

= X(f)(w ⊗ W ) + f∇X(w ⊗ W ). (1.38)

This proves that ∇ : Γ(TM∗ ⊗ u−1TN) → Γ(TM∗ ⊗ TM∗ ⊗ u−1TN) is a connection

in the tensor product TM∗ ⊗ u−1TN . From the definition of ∇ it is clear that this

connection is compatible with the fiber metric in TM∗ ⊗ u−1TN .

As discussed previously, the differential of the map u ∈ C∞(M, N) defines a C∞

section du ∈ Γ(TM∗ ⊗ u−1TN) in the vector bundle TM∗ ⊗ u−1TN . Consider the

covariant differential of du by the connection ∇ in TM∗ ⊗ u−1TN , given by ∇du ∈

Γ(TM∗ ⊗ TM∗ ⊗ u−1TN). This ∇du is called second fundamental form of the C∞

map u. We have

Lemma 1.2.2. Given u ∈ C∞(M, N) and X, Y ∈ Γ(TM), we have

∇du(X, Y ) =′ ∇Xdu(Y ) − du(∇XY ). (1.39)
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Proof. For w ∈ ΓΓ(TM∗), W ∈ Γ(u−1TN)

(∇(w ⊗ W ))(X, Y ) = (∇∗
Xw ⊗ W + w ⊗′ ∇XW )(Y ) (1.40)

= (Xw(Y ) − w(∇XY )) ⊗ W + w(Y ) ⊗′ ∇XW (1.41)

=′ ∇X((w ⊗ W )(Y )) − (w ⊗ W )(∇XY ). (1.42)

Hence, we have

∇du(X, Y ) =′ ∇Xdu(Y ) − du(∇XY ). (1.43)

This can serve as an alternate definition of ∇du. If we express in coordinates,

du =

m
∑

i=1

n
∑

α=1

∂uα

∂xi
dxi ⊗

∂

∂yα
◦ u, (1.44)

∇du =
m
∑

i,j=1

n
∑

α=1

∇i∇ju
αdxi ⊗ dxj ⊗

∂

∂yα
◦ u, (1.45)

where we have,

Lemma 1.2.3. For each 1 ≤ i, j ≤ m, 1 ≤ α ≤ n, the coefficients in (1.45) are given

by,

∇i∇ju
α =

∂2uα

∂xi∂xj
−

m
∑

k=1

Γk
ij

∂uα

∂xk
+

n
∑

β,γ=1

Γ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj
(1.46)

Proof. From the definition of ∇du and (1.45),

∇ ∂

∂xi
du = ∇du

(

∂

∂xi
, ., .

)

=
m
∑

j=1

n
∑

α=1

∇i∇ju
α.dxj ⊗

∂

∂yα
◦ u (1.47)
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On the other hand, from the definition of the induced connection ′∇ and (1.44),

∇ ∂

∂xi
du = ∇ ∂

∂xi

(

m
∑

j=1

n
∑

α=1

∂uα

∂xj
dxj ⊗

∂

∂yα
◦ u

)

(1.48)

=
m
∑

j=1

n
∑

α=1

{
∂2uα

∂xi∂xj
dxj ⊗

∂

∂yα
◦ u +

∂uα

∂xj
∇∗

∂

∂xi

dxj (1.49)

⊗
∂

∂yα
◦ u +

∂uα

∂xj
dxj ⊗′ ∇ ∂

∂xi

∂

∂yα
◦ u} (1.50)

=
m
∑

j=1

n
∑

α=1

{

∂2uα

∂xi∂xj
−

m
∑

k=1

Γk
ij

∂uα

∂xk
+

n
∑

β,γ=1

Γ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj

}

(1.51)

.dxj ⊗
∂

∂yα
◦ ufrom (1.26). (1.52)

Corollary 1.2.1. Given u ∈ C∞(M, N) and X, Y ∈ Γ(TM),

∇du(X, Y ) = ∇du(Y, X) (1.53)

Proof. From Lemma 1.2.3, ∇i∇ju
α = ∇j∇iu

α and then from (1.45).

Let E1, ..., Em be an orthonormal basis for the tangent space TxM of M at each

point x ∈ M . For the second fundamental form ∇du of a C∞ map u, as readily seen,

From orthonormality of basis vectors E1, ..., Em and (1.45), trace of this map can be

defined as

trace∇du(x) =
m
∑

i=1

∇du(x)(Ei, Ei) (1.54)

=

n
∑

α=1

(

m
∑

i,j=1

gij∇i∇ju
α

)

∂

∂yα
◦ u (1.55)

10



implying that this trace is independent of the basis functions E1, ..., Em ∈ TxM .

Definition 1.2.1. Given a C∞ map u ∈ C∞(M, N),

τ(u) = trace∇du ∈ Γ(u−1TN) (1.56)

is called the tension field of u.

Example 1.2.1. Let u : R
m → R

n be a C∞ map. Let (x1, ..., xm) be a coordinate chart

for R
m and let (y1, ..., yn) be a coordinate chart for R

n. Also let u = (u1, ..., un) be the

coordinate representation of u. Then

trace∇u(x) =

n
∑

α=1

(

m
∑

i=1

∂2uα

∂(xi)2

)

∂

∂yα
◦ u(x) ∈ TNu(x) (1.57)

Notice here that the components of the tension field τ(u) are Laplacians of the coordi-

nate maps.

Due to this example, we can think of the tension field τ(u) as the ‘local Laplacian’

of the map.

1.3 The First Variation Formula

With this preparation, we derive a relation between energy of the map E(u) and the

tension field τ(u).

Definition 1.3.1. Consider u ∈ C∞(M, N). A C∞ map F : M × I → N is called a

C∞ variation or a smooth variation of F provided that

F (x, 0) = u(x), x ∈ M. (1.58)
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Given a variation F as defined above, we denote

ut(x) = F (x, t), x ∈ M, t ∈ I. (1.59)

called variation of u where u0 = u. When a smooth variation F = {ut}t∈I is given, at

each x ∈ M , ut(x) = F (x, t) : I → N defines a C∞ curve in N , passing through u(x)

at t = 0. Consequently, the set of tangent vectors to these curves at t = 0, denoted by

V (x) =
d

dt

∣

∣

∣

t=0
ut(x) =

∂F

∂t
(x, 0) ∈ Tu(x)N, x ∈ M, (1.60)

defines a C∞ section V ∈ Γ(u−1TN) of the induced bundle u−1TN . In other words,

V (x) defines a C∞ vector field in N along the map u. Intuitively, we can think of V (x)

as the rate of change of the map ut at t = 0.

Given a smooth variation F = {ut}t∈I , we investigate the change of the energy

functional E. We have,

E(ut) =
1

2

∫

M

|dut|
2 dµg. (1.61)

Theorem 1.3.1 (The first variation formula). Let F ∈ utt∈I be a C∞ variation of a C∞

map u ∈ C∞(M, N). Let M be compact. Then

d

dt
E(ut)

∣

∣

∣

t=0
= −

∫

M

〈V, τ(u)〉dµg, (1.62)

where V = d
dt

∣

∣

∣

t=0
ut is a variation vector field of u, and τ(u) is the tension field of u.

〈, 〉 is the natural fiber metric in the induced bundle u−1TN .

Proof. Let F (x, t) = ut(x) be a map defining a C∞ variation of u. Consider the vector

bundle T (M ×I)∗⊗F−1TN over the product manifold M ×I . As seen above, T (M ×

I)∗⊗F−1TN admits a natural fiber metric 〈, 〉 and a standard connection ∇ compatible

12



with the metric. Under the natural identification T(x,t)(M ×I) ∼= TxM ⊕TtI , we denote

the covariant differentiation with respect to the connection ∇ compatible with the metric

in the directions (∂/∂xi, 0) ∈ T(x,t)(M×I) and (0, d/dt) ∈ Tx,t(M × I), respectively

∇i = ∇(∂/∂xi,0), ∇t = ∇(0,d/dt). (1.63)

From the definition of E(ut),

E(ut) =
1

2

∫

M

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)

(

∂uα
t

∂xi

)

(

∂uβ
t

∂xj

)

dµg. (1.64)

Therefore, since ∇ is compatible with the fiber metric 〈, 〉,

∇ig
jkhαβ(ut) = 0, ∇tg

jkhαβ(ut) = 0 (1.65)

d

dt
E(ut)

∣

∣

∣

t=0
=

1

2

∫

M

d

dt

(

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)
∂uα

t

∂xi

∂uβ
t

∂xj

)

∣

∣

∣

t=0
dµg (1.66)

=

∫

M

m
∑

i,j=1

n
∑

α,β=1

(

gijhαβ(ut)∇t
∂uα

t

∂xi

∂uβ
t

∂xj

)

∣

∣

∣

t=0
dµg. (1.67)

On the other hand, since [(0, d/dt), (∂/∂xi, 0)], we get

∇(0,d/dt)dut

((

∂

∂xi
, 0

))

−∇(∂/∂xi,0)dut

((

0,
d

dt

))

(1.68)

= dut

(

∇(0,d/dt)(∂/∂xi, 0) −∇(∂/∂xi,0)(d/dt, 0)
)

by 1.2.2 and 1.2.1 (1.69)

= dut

([(

0,
d

dt

)

,

(

0,
∂

∂xi

)])

(1.70)

= 0 (1.71)
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This implies that for each 1 ≤ i ≤ m, 1 ≤ α ≤ n, we get

∇t
∂uα

t

∂xi
= ∇i

∂uα
t

∂t
(1.72)

By writing variational vector field of u in coordinates,ting variational vector field of

u in coordinates,

V =
n
∑

α=1

V α ∂

∂yα
◦ u with V α =

∂uα
t

∂t

∣

∣

∣

t=0
, (1.73)

we get,

d

dt
E(ut)

∣

∣

∣

t=0
=

∫

M

m
∑

i,j=1

n
∑

α,β=1

(

gijhαβ(ut)∇i

(

∂uα
t

∂t

∣

∣

∣

t=0

)

∂uβ
t

∂xj

)

dµg (1.74)

=

∫

M

m
∑

i,j=1

n
∑

α,β=1

(

gijhαβ(ut)∇iV
∂uβ

t

∂xj

)

dµg (1.75)

=

∫

M

〈∇V, du〉dµg. (1.76)

where 〈, 〉 in (1.76) is with respect to the metric gijhαβ in TM∗ ⊗ u−1TN . Hence from

the next lemma, we obtain the desired first variation formula (1.62).

Lemma 1.3.2.
∫

M

〈∇V, du〉dµg = −

∫

M

〈V, τ(u)〉dµg. (1.77)

where on the left hand side, 〈, 〉 is the inner product with respect to the metric gijhαβ on

TM∗ ⊗ u−1TN , and on the right side, it is with respect to the induced metric u∗h on

u−1TN .
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Proof. Let X be a C∞ vector field over M given by

X =
m
∑

i=1

X i ∂

∂xi
=

m
∑

i=1

(

m
∑

j=1

n
∑

αβ=1

gijhαβ(u)V α∂uβ

∂xj

)

∂

∂xi
. (1.78)

Denote the covariant derivative of X by

∇X =
m
∑

i,j=1

∇iX
j · dxi ⊗

∂

∂xj
. (1.79)

The divergence of X is given by div X =
∑m

i=1 ∇iX
i. Then by compatibility of the

connection ∇ with gijhαβ , (1.44), (1.45) and since

∇(V ⊗ du) = ∇V ⊗ du + V ⊗∇du, (1.80)

we get,

div X =
m
∑

i,j=1

n
∑

α,β=1

gijhαβ(u)∇iV
α ∂uβ

∂xj
(1.81)

+

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(u)V α∇i∇ju
β (1.82)

= 〈∇V, du〉 + 〈V, τ(u)〉. (1.83)

Green’s theorem
∫

M

div Xdµg = 0 (1.84)

yields the desired result.

The first variation formula gives the following important relationship between the

energy of maps E(ut) and τ(ut).
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Corollary 1.3.1. Given u ∈ C∞(M, N), a necessary and sufficient condition for the

first variation of E(ut) of an arbitrary C∞ variation F = {ut}t∈I to satisfy

d

dt
E(ut)

∣

∣

∣

t=0
= 0 ∀F = {ut}t=I

is τ(u) ≡ 0.

Proof. (⇒) We can take any section V ∈ Γ(u−1TN) in the first variation formula (1.62)

can be chosen arbitrarily. (⇐) Clear from the first variation formula.

Thus u ∈ C∞(M, N) with τ(u) = 0 is a critical point of the energy functional E.

1.4 Harmonic Maps

We begin with the definition of a harmonic map and give some examples later in the

next section. We also derive the coordinate representation of the equation for harmonic

maps.

Definition 1.4.1. A C∞ map u ∈ C∞(M, N) is called a harmonic map if its tension

field τ(u) is identically zero; namely,

τ(u) = trace∇du ≡ 0 (1.85)

holds in M . (1.85) is called the equation for harmonic maps.

When M is compact, a harmonic map u is also a critical point of the energy func-

tional E. In fact, from Corollary 1.3.1, the map u ∈ C∞(M, N) being harmonic means

that

d

dt
E(ut)

∣

∣

∣

t=0
= 0 (1.86)
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holds for arbitrary C∞ variation F = {ut}t∈I of u.

We now derive a coordinate representation of the equation for harmonic maps. Let

(xi) and (yα) denote local coordinate systems in M and N , respectively. With these

local coordinates, we express the map u by

u(x) = (u1(x1, ..., xm), ..., un(x1, ..., xm)) = (uα(xi)), (1.87)

and denote the tension field τ(u) of u by

τ(u) =

n
∑

α=1

τ(u)α ∂

∂yα
◦ u ∈ Γ(u−1TN). (1.88)

where

τ(u)α =

m
∑

i,j=1

gij

{

∂2uα

∂xi∂xj
−

m
∑

k=1

Γk
ij

∂uα

∂xk
+

n
∑

β,γ=1

Γ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj

}

(1.89)

= ∆uα +
m
∑

i,j=1

n
∑

β,γ

gijΓ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj
. (1.90)

Here Γi
jk and Γ′α

βγ respectively represent the connection coefficients of the Levi-Civita

connection in M and N , and ∆ is the Laplacian in M . Therefore, from (1.85) and

(1.90), we get the coordinate equation of the harmonic maps

∆uα +

m
∑

i,j=1

n
∑

βγ

gijΓ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj
= 0, 1 ≤ α ≤ n. (1.91)
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Chapter 2

The Heat Flow Method

In this chapter we state and prove existence theorem for harmonic maps between two

manifolds. Furthermore we prove that any continuous map can be free homotopically

deformed to a harmonic map provided that certain conditions are satisfied.

2.1 The Eells Sampson Theorem

The goal of this section is to present the statement of Eell and Sampson’s theorem, which

is fundamental in the theory of harmonic mappings between Riemannian manifolds.

We discuss the statement and various definitions associated with it, and discuss their

implications. The proof is given in later sections.

Eells Sampson’s Theorem 1. Let (M, g) and (N, h) be compact Riemannian manifolds.

Assume that (N,h) is of non-positive curvature. Then for any f ∈ C∞(M, N), there is a

harmonic map u∞ : M → N free-homotopic to f .

Unlike the existence theorem of closed geodesics, the condition on sectional cur-

vature is necessary. For example, Eells and Woods [EW76] show that any map

f : T 2 → S2 of mapping degree ±1 from the 2D torus T 2 to 2D sphere S2 is not

free homotopic to a harmonic map, regardless of the Riemannian metric g, h on S2 and

T 2.

For the existence proof of the harmonic maps, the direct variational technique

encounters some difficulties because of the nonlinearity of the system of equations, con-

trary to the fact that the defining equations for geodesics is a system of linear differential
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equations. However Eells and Sampson were successful in proving Theorem 1 by the

heat flow method.

2.2 The Heat Flow Method

In this section we discuss the heat flow method which not only proves the existence of a

harmonic map but also tells us how to find one. The idea is to smoothly deform a given

initial map f ∈ C∞(M, N) in a ’best’ possible way to minimize the energy functional

E(ut). Let u ∈ C∞(M, N) and let F = {ut}t∈I , I = (−ǫ, ǫ) be its first variation. Then

the variation vector field V = d
dt

ut|t=0. Let τ(u) be the tension field of u, 〈, 〉 be the

natural fiber metric in the induced vector bundle u−1TN .

The rate of change of the energy functional E is given by the first variation formula

for the energy functional E(ut):

d

dt
E(ut)|t=0 = −

∫

M

〈V, τ(u)〉dµg. (2.1)

If we consider S = C∞(M, N) as a (infinite dimensional) manifold, ut can be

regarded as a curve on S and the variation vector field d
dt

ut can be regarded as a vec-

tor in tangent space TuS. In this space, we define the inner product 〈〈W1, W2〉〉 =
∫

M
〈W1, W2〉dµg. Also the derivative of the function E(ut) on S in the direction of

V = d
dt

ut|t=0 is given by dEu(V ) = d
dt

E(ut)|t=0. Therefore, the first variation formula

can be written as

dEu(V ) = −〈〈τ(u), V 〉〉. (2.2)

Since this is true for any variation vector field V ∈ TuS, by definition of gradient on

manifold, we have

τ(u) = −(grad E)(u). (2.3)

19



Consequently, a harmonic map u which is a critical point of the energy functional is a

zero of the gradient vector field gradE. We may say that the functional E decreases in

the direction of − gradE. The heat flow method tries to deform a map u0 = f and find

a flow ut such that

∂ut

∂t
= τ(ut) (2.4)

i.e. it tries to move ut ∈ S in the direction of the negative gradient of E and hopes that

critical point of E is attained. So a sufficient condition for the existence of the harmonic

map free homotopic to u0 = f is that τ(u∞) = gradE(u∞) = 0. With this in mind,

we study the following initial value problem. For a given f ∈ C∞(M, N) and T > 0

and assuming that u is continuous, we would like to know if the following system of

equations has a solution.















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0,∞),

u(x, 0) = f(x).

(2.5)

This is a non-linear parabolic system of equations. To prove Theorem (1), we ask:

1. For any initial value f ∈ C∞(M, N), does (2.5) has a solution?

2. If yes, then is u∞ harmonic and free homotopic to u0 = f?
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First lets assume that 1 holds and lets try to answer 2. The key to analyzing 2 is to

study how fast does E(ut) change if ut satisfies (2.5). Lets first define a few quantities

which measure this rate of change.

e(ut) =
1

2
|dut|

2 Harmonic energy density, (2.6)

E(ut) =

∫

M

e(ut)dµg Harmonic energy, (2.7)

κ(ut) =
1

2
|
∂ut

∂t
| Kinetic energy density (2.8)

K(ut) =

∫

M

κ(ut)dµg Kinetic energy (2.9)

To study the rate of change of E(ut), we study these quantities. In particular we

want to know what is
∂e(ut)

∂t
and what is

∂κ(ut)
∂t

and how are they related to the geometry

of M and N . The Weitzenböck formula gives us an important relation between these

and curvatures of the manifolds M and N .

For the proof of Weizenböck formulas, we need a notion of second order covariant

derivatives. The connection

∇ : Γ(TM∗ ⊗ u−1TN) → Γ(TM∗ ⊗ TM∗ ⊗ u−1TN) (2.10)

is compatible with the fiber metric 〈, 〉 in TM∗ ⊗ u−1TN .

Lemma 2.2.1. Given T ∈ Γ(TM∗ ⊗ u−1TN) and X, Y, Z ∈ Γ(TM), we have

(∇∇T )(X, Y, Z) = (∇X∇T )(Y, T ) = (∇X(∇Y T ))(Z) − (∇∇XY T )(Z) (2.11)
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Proof.

(∇∇T )(X, Y, Z) = (∇X∇T )(Y, T ) (2.12)

= ∇X(∇T (Y, Z)) −∇T (∇XY, Z) −∇T (Y,∇XZ) (2.13)

= ∇X((∇Y T )(Z)) − (∇∇XY T )(Z) − (∇Y T )(∇XZ) (2.14)

= (∇X(∇Y T ))(Z) − (∇∇XY T )(Z). (2.15)

We need an important identity called the Ricci identity. First we prove a lemma

which we use for proving the identity.

Lemma 2.2.2. Let T ∈ Γ(TM∗ ⊗ u−1TN) and X, Y, Z ∈ Γ(TM). Denote ∇ the

connection in TM∗⊗u−1TN and by ′∇ the induced connection in u−1TN . Also denote

by RM , RN the curvature tensors of M , N respectively. Set

R∇(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] (2.16)

R
′∇(X, Y ) =′ ∇′

X∇Y −′ ∇′
Y ∇X −′ ∇[X,Y ]. (2.17)

Then,

(R∇(X, Y )T )(Z) = R
′∇(X, Y )(T (Z)) − T (RM(X, Y )Z). (2.18)

Proof.

′∇Y (T (Z)) = (∇Y )(Z) + T (∇Y Z), (2.19)

′∇′
X∇Y (T (Z)) = (∇X∇Y T )(Z) + (∇Y T )(∇XZ) (2.20)

+ (∇XT )(∇Y Z) + (∇XT )(∇Y Z). (2.21)
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Similarly computing −′∇′
Y ∇X(T (Z)) and −′∇[X,Y ](T (Z)) and adding them together,

we get

R
′∇(X, Y )(T (Z)) = (R∇(X, Y )T )(Z) + T (RM(X, Y )Z). (2.22)

Proposition 2.2.3 (Ricci identity). Let T ∈ Γ(TM∗ ⊗ u−1TN). With respect to the

local coordinates (xi), (yα) on M and N , express

T =
m
∑

i=1

n
∑

α=1

T α
i dxi ⊗

∂

∂yα
◦ u, (2.23)

∇∇T =

m
∑

i,j,k=1

n
∑

α=1

∇i∇jT
α
k dxi ⊗ dxj ⊗ dxk ⊗

∂

∂yα
◦ u. (2.24)

Then,

∇i∇jT
α
k −∇j∇iT

α
k = −

m
∑

l=1

RM l

ijkT α
l +

α
∑

β,γ,δ=1

RNα

β,γ,δ

∂uβ

∂xi

∂uγ

∂xj
T δ

k . (2.25)

Proof. Using the notation in Lemma 2.2.2 and the definition of the induced connection

′∇ in vector bundle u−1TN , from Lemma 2.2.2, we get

(

R∇

(

∂

∂xi
,

∂

∂xj

)

T

)(

∂

∂xk

)

= R
′∇

(

∂

∂xi
,

∂

∂xj

)(

T

(

∂

∂xk

))

− T

(

RM

(

∂

∂xi
,

∂

∂xj

)

∂

∂xk

)

=
∑

α

(

∑

β,γ,δ

RNα

β,γ,δ

∂uβ

∂xi

∂uγ

∂xj
T δ

k −
∑

l

RM l

ijkT
α
l

)

∂

∂yα
◦ u

(2.26)

On the other hand, since we have

∇∇T

(

∂

∂xi
,

∂

∂xj
,

∂

∂xk

)

=
∑

α

∇i∇jT
α
k

∂

∂yα
◦ u, (2.27)
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The conclusion follows from the definition of R∇ given in (2.16), from fact that partial

derivatives commute, and then comparing coefficients.

Consider the second order covariant differential as given by Lemma 2.2.1. The con-

nection on the tensor ∇du is given by

∇∇du(X, Y, Z) = (∇X(∇Y du))(Z) − (∇∇XY du)(Z). (2.28)

In local coordinate systems (xi) and (yi) of M and N , respectively, we express du,

∇du and ∇∇du and the curvature tensors RM and RN by

du =

m
∑

i=1

n
∑

α=1

∂uα

∂xi
· dxi ⊗

∂

∂yα
◦ u, (2.29)

∇du =
m
∑

i,j=1

n
∑

α=1

∇i∇ju
α · dxi ⊗ dxj ⊗

∂

∂yα
◦ u, (2.30)

∇∇du =

m
∑

i,j,k=1

n
∑

α=1

∇i∇j∇ku
α · dxi ⊗ dxj ⊗ dxk ⊗

∂

∂yα
◦ u, (2.31)

RM =

(

∂

∂xi
,

∂

∂xj

)

∂

∂xk
=

m
∑

l=1

RM l

ijk

∂

∂xl
, (2.32)

RN =

(

∂

∂yα
,

∂

∂yβ

)

∂

∂yγ
=

n
∑

δ=1

RMδ

αβγ

∂

∂yδ
(2.33)

Corollary 2.2.1. In (2.31),

∇i∇j∇ku
α −∇j∇i∇ku

α = −
m
∑

l=1

RM l

ijk

∂uα

∂xl
+

n
∑

βγδ=1

RNα

βγδ

∂uβ

∂xi

∂uγ

∂xj

∂uδ

∂xk
. (2.34)

Proof. This is a special case of the Ricci identity in Proposition (2.2.3) with T = du.
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Proposition 2.2.4 (Weizenböck formulas). Let u ∈ C0(M × [0, T ), N) ∩ C∞(M ×

(0, T ), N) be a solution to (2.5). Then we have in M × (0, T ),

∂e(ut)

∂t
= ∆e(ut) − |∇∇ut|

2 −

m
∑

i=1

〈

dut(

m
∑

j=1

RicM (ei, ej)ej), dut(ei)

〉

+
m
∑

i,j=1

〈

RN (dut(ei), dut(ej))dut(ej), dut(ei)
〉

(2.35)

and,

∂κ(ut)

∂t
= ∆κ(ut) − |∇

∂ut

∂t
| +

m
∑

i=1

〈

RN (dut(ei),
∂ut

∂t
)
∂ut

∂t
, dut(ei)

〉

. (2.36)

Proof. Consider the induced connection ∇ compatible with the natural fiber metric 〈, 〉

in the vector bundle (TM × (0, T ))∗⊗u−1TN over M × (0, T ). Using this connection,

we denote the covariant differentiations in the directions (∂/∂xi, 0) ∈ T(x,t)(M×(0, T ))

and (0, d/dt) ∈ T(x,t)(M × (0, T )), respectively, by

∇i = ∇(∂/∂xi,0), ∇t = ∇(0,d/dt). (2.37)

Since ∇ is compatible with the fiber metric 〈, 〉, we see that

∇ig
jkhαβ(ut) = 0, ∇tg

jkhαβ(ut) = 0. (2.38)

25



Therefore,

∂e(ut)

∂t
= ∇t

(

1

2

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)
∂uα

t

∂xi

∂uβ
t

∂xj

)

(2.39)

=
m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)(∇t
∂uα

t

∂xi
)
∂uβ

t

∂xj
. (2.40)

From (1.72), we get

∇t
∂uα

t

∂xi
= ∇i

∂uα
t

∂t
, 1 ≤ i ≤ m, 1 ≤ α ≤ n. (2.41)

Consequently, we get

∂e(ut)

∂t
=

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)(∇i
∂uα

t

∂xi
)
∂uβ

t

∂xj
(2.42)

=
m
∑

i=1

〈

∇ei

∂ut

∂t
, dut(ei)

〉

. (2.43)

Since we have

∇k∇le(ut) = ∇k∇l

(

1

2

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)
∂uα

t

∂xi

∂uβ
t

∂xj

)

(2.44)

= ∇k

(

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)∇l∇iu
α
t

∂uβ
t

∂xj

)

(2.45)

=

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)

(

∇k∇l∇iu
α
t

∂uβ
t

∂xj
+ ∇l∇iu

α
t ∇k∇ju

β
t

)

, (2.46)
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noting ∇l∇iu
α
t = ∇i∇lu

α
t , 1 ≤ i, l ≤ m, 1 ≤ α ≤ m as given in Corollary 1.2.1, we

get

∆e(ut) =
m
∑

k,l=1

gkl∇k∇le(ut) (2.47)

=

m
∑

i,j,k,l=1

n
∑

α,β=1

gijgklhαβ(ut)∇k∇i∇lu
α
t

∂uβ
t

∂xj
+ |∇∇ut|

2 . (2.48)

Now applying Corollary 2.2.1, we get

∆e(ut) =

m
∑

i,j=1

n
∑

αβ=1

gijhαβ(ut)∇i

(

m
∑

j,k=1

gkl∇k∇lu
α
t

)

∂uβ
t

∂xj
+ |∇∇ut|

2
(2.49)

−

m
∑

i,j=1

n
∑

α,β=1

gijhαβ(ut)

{

m
∑

r=1

(

m
∑

k,l=1

gklRMr

kil

)

∂uα
t

∂xr

}

∂uβ
t

∂xj
(2.50)

+

n
∑

α,β=1

hαβ(ut)

(

m
∑

i,j,k,l=1

n
∑

γδǫ=1

gijgklRNα

γδǫ

∂uγ
t

∂xk

∂uδ
t

∂xi

∂uǫ
t

∂xl

∂uβ
t

∂xj

)

(2.51)

=
m
∑

i=1

〈∇ei
τ(ut), dut(ei)〉 + |∇∇ut|

2 (2.52)

+
m
∑

i=1

〈

dut

(

m
∑

j=1

RicM(ei, ej)ej

)

, dut(ei)

〉

(2.53)

−

m
∑

i,j=1

〈

RN(dut(ei), dut(ej))dut(ej), dut(ei)
〉

. (2.54)

We know that ∂ut/∂t = τ(ut) holds since by hypothesis, ut is a solution to (2.5).

Substituting this in the above equation for ∆e(ut) and then comparing with (2.43) yields

the desired identity.

We use The Weizenböck formulas to estimate the rates of change of the harmonic

energy E(ut).
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Corollary 2.2.2. Let u : M × [0, T ) → N be a solution to the parabolic system of

equations (2.5), then

1. If N is of non-positive curvature KN ≤ 0, and if, furthermore, there exists a

constant C such that RicM ≥ −Cg, then

∂e(ut)

∂t
≤ ∆e(ut) + 2Ce(ut). (2.55)

2. If N is of non positive curvature KN ≤ 0, then

∂κ(ut)

∂t
≤ ∆κ(ut). (2.56)

Proof. (1) Note that the fourth term of the right hand side of (2.35) is negative because

KN is negative. Also, since RicM ≥ −Cg, we have

dut(
m
∑

j=1

RicM(ei, ej)ej) ≥ −Cdut(ei). (2.57)

Therefore the third term in (2.35)

−
m
∑

i=1

〈

dut(
m
∑

j=1

RicM(ei, ej)ej), dut(ei)

〉

≥ C 〈dut(ei), dut(ei)〉 (2.58)

= 2e(ut). (2.59)

Here the inner product was in Hom(M, N) = Γ(TM∗) ⊗ Γ(u−1TN) The second

term in (2.35) is negative which leads to the desired inequality (2.55).

(2) follows from (2.36).

The above corollary is remarkable since it puts bounds on rates of change of har-

monic and kinetic energy densities e(ut) and κ(ut). Also note that, if M is compact,

28



there always exists C ∈ R as required in 1. From these bounds on rates of change of

densities, we get bounds on the rate of change of harmonic energy functional itself.

Proposition 2.2.5. Let u : M × [0, T ) → N be a solution to the parabolic system of

equations (2.5). Then the following holds,

1. E(ut) is a monotone non-increasing function, i.e.

d

dt
E(ut) = −2K(ut) ≤ 0. (2.60)

2. If N is of non-positive curvature KN ≤ 0, then

d2

dt2
E(ut) = −2

d

dt
K(ut) ≥ 0. (2.61)

Proof. (2.60) The first variational formula gives

d

dt
E(ut) = −

∫

M

〈
∂ut

∂t
, τ(ut)〉dµg (2.62)

= −

∫

M

〈
∂ut

∂t
,
∂ut

∂t
〉dµg = −|

∂ut

∂t
| (2.63)

= −2K(ut). (2.64)

(2.61) Differentiating one more time,

d

dt
K(ut) =

d

dt

∫

M

κ(ut)dmug =

∫

M

∂κ(ut)

∂t
≤

∫

M

∆κ(ut)dµg = 0. (2.65)

by 2.56 and Green’s theorem.

This proves that if N has non-positive curvature, then the harmonic energy E(ut) is

a convex function and the kinetic energy K(ut) is a monotone non-increasing function.
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Since E(ut) ≥ 0, and it is monotonically decreasing, the rate of change d
dt

E(ut) =

K(ut) → 0 must hold. Therefore from the definition of K(ut), ∂ut/∂t → 0 as t → 0.

Since we assumed ut is a solution of (2.5), τ(ut) → 0. In other words, ut converges to

a harmonic map u∞. Thus we have proved that if 2.5 has a solution, then the harmonic

map exists. Now, we prove existence of solution to (2.5).
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Chapter 3

Existence of Local and Global

Solutions

In this chapter we prove existence of a local solution to the heat flow (2.5). We assume

that M and N are compact. We use many results from the theory of PDEs. The results

that are used often are summarized in the Appendix A.1.

3.1 Existence of Local Solutions

First we note that

Theorem 3.1.1. If a C2 differentiable map u : M → N satisfies the equation for

harmonic maps

τ(u) = 0 (3.1)

then, u is a C∞ map.

Proof. Without loss of generality, we may verify this at each point x ∈ M . Let V

be a coordinate neighborhood about x ∈ M and let W be a coordinate neighborhood

about u(x) such that u(V ) ⊂ W . In the local coordinates (xi) in V and (yα) in W , the

equation for harmonic maps (1.90) is expressed as

∆uα = −
m
∑

i,j=1

n
∑

β,γ=1

gijΓ′α
β,γ

∂uβ

∂xi

∂uγ

∂xj
. (3.2)
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where ∆ is the Laplace operator of M and Γ′α
β,γ are the connection coefficients of the

Levi-Civita connection on N . Suppose u is C2. Therefore the right hand side is a C1

function. In particular it is σ-Hölder continuous for 0 < σ < 1. Consequently, u is of

C2+σ from Theorem A.2.2 on differentiability for the solutions to linear elliptic partial

differential equations. Therefore, the right hand side must be C1+σ. Hence u must be

C2+2σ from the same theorem. Repeating the argument, we see that u is C∞.

This tells us that we only have to show the existence of a C2 solution.

In this section, we seek a local time-dependent solution to the following initial value

problem in (3.3). Namely, for sufficiently small T , the following has a solution.















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0, T ),

u(x, 0) = f(x)

(3.3)

To do this, we first simplify the problem to the Euclidean case by Nash’s embedding

theorem which shows that an arbitrary compact Riemannian manifold can be isometri-

cally embedded in Euclidean space of sufficiently high dimension. Therefore, we may

assume, without loss of generality, that (N, h) is realized as a submanifold of the q-

dimensional Euclidean space R
q for a large enough integer q, and that the Riemannian

metric h is the induced metric from R
q. Let

i : N → R
q (3.4)

denote such an isometric embedding, and let Ñ be a tubular neighborhood of the sub-

manifold i(N) ⊂ R
q in R

q, i.e. for sufficiently small ǫ > 0, Ñ is an open subset

Ñ =
{

(x, v)| x ∈ i(N), v ∈ Txi(N)⊥, |v| < ǫ
}

. (3.5)
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In the tubular neighborhood Ñ , let π : Ñ → i(N) denote the projection map which

assigns to each z ∈ Ñ the closest point in i(N) from z.

Now the idea is to transform the initial value problem (3.3) to an equivalent initial

value problem in the tubular neighborhood and prove the existence of solution. Since

the tubular neighborhood is a submanifold of the Euclidean space R
q, this simplifies

things to some extent.

Let u : M × [0, T ) → Ñ be a map from M × [0, t) into Ñ ⊂ R
q. Therefore u can

be regarded as a R
q valued function. Consider the initial value problem















(∆ − ∂
∂t

)u(x, t) = Π(u)(du, du)(x, t), (x, t) ∈ M × (0, T ),

u(x, 0) = i ◦ f(x).

(3.6)

Here ∆ is the Laplace operator in M , and Π(u)(du, du) is a vector in R
q defined as

follows. Let (zA)1≤A≤q be the standard coordinate system of R
q, and let (xi)1≤i≤m be

the local coordinate system of M . Then we express the projection map π : Ñ → i(N)

and u : M × [0, t) → Ñ as

π(z) = (π1(z1, ..., zq), ..., πq(z1, ..., zq)) = (πA(zB)), (3.7)

u(x, t) = (u1(x1, ..., xm, t), ..., uq(x1, ..., xm, t)) = (uA(xi, t)). (3.8)

Then we define the components of the vector Π(u)(du, du) by

m
∑

i,j

q
∑

B,C=1

gij ∂2πA

∂zB∂zC
(u)

∂uB

∂xi

∂uC

∂xj
, 1 ≤ A ≤ q. (3.9)
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Similar to (1.89), and noting that π is in Euclidean space and hence the connection

coefficients are zero, we can interpret Π as

Π(u)(du, du) = trace∇dπ(du, du). (3.10)

The following proposition proves that instead of finding a solution to the initial value

problem (3.3), we can equivalently seek a solution to (3.6).

Proposition 3.1.2. Let u ∈ C0(M × [0, T ), Ñ)∩C2,1(M × (0, T ), Ñ). If u is a solution

to the initial value problem (3.6), then u(M × [0, T )) ⊂ i(N) holds, and u is a solution

to the initial value problem (3.3). The converse also holds true.

Proof. Suppose u ∈ C0(M × [0, T ), Ñ) ∩ C2,1(M × (0, T ), Ñ) is a solution of (3.6).

First we verify that u(M × [0, t)) ⊂ i(N) holds. Define a map ρ : Ñ → R
q by

ρ(z) = z − π(z), z ∈ (Ñ) (3.11)

and define φ : M × [0, T ) → R by

φ(x, t) = |ρ(u(x, t))|2, (x, t) ∈ M × [0, T ). (3.12)
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From the definition of π, ρ(z) = 0 is equivalent to z ∈ i(N). Hence, it is sufficient

to show that φ(x, t) = 0 since it implies that u(M × [0, T ) ∈ i(N)). Since u(x, 0) =

i ◦ f(x) ∈ i(N), we see that φ(x, 0) = 0. Since u is a solution of (3.6), we get

∂φ

∂t
=

∂

∂t
〈ρ(u), ρ(u)〉 = 2

〈

dρ(
∂u

∂t
), ρ(u)

〉

(3.13)

= 2〈dρ(∆u − Π(u)(du, du)), 〉, (3.14)

∆φ = ∆〈ρ(u), ρ(u)〉 (3.15)

= 2〈∆ρ(u), ρ(u)〉 + 2|∇ρ(u)|2, (3.16)

where the inner product 〈, 〉 and ∇ are in R
q as usual. ∆ is usual Laplacian in R

q. We

know that the following identity holds. 1

∆ρ(u) = dρ(∆u) + trace∇dρ(du, du). (3.20)

1Let M1, M2, M3 be Riemannian manifolds, and let f1 : M1 → M2 and f2 : M2 → M3 be smooth

maps. From Lemma 1.2.2 and definition of induced connection, for X, Y ∈ Γ(TM1)

∇d(f2 ◦ f1)(X, Y ) = ∇X(df2 ◦ df1(Y )) − (df2 ◦ df1)(∇XY ) (3.17)

= (∇df1(X)df2)(df1(Y )) + df2(∇X(df1(Y ))) − df2 ◦ df1(∇XY ) (3.18)

= ∇df2(df1(X), df1(Y )) + df2(∇df1(X, Y )). (3.19)

Taking trace, we get

τ(f2 ◦ f1) = trace∇df2(df1, df1) + df2(τ(f1))

. When M3 is Euclidean, then recalling that tension field is the Laplacian in that case, we get

∆(f2 ◦ f1) = trace∇df2(df1, df1) + df2(∆(f1))

.
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Since π(z) + ρ(z) = z from the definition, we have dπ + dρ = id the identity map,

and therefore, ∇dπ + ∇dρ = 0. Also note that images of dπ and ρ are orthogonal.

Therefore, we get

∆φ = 2〈dρ(∆u) − trace∇dπ(du, du), ρ(u)〉+ 2|∇ρ(u)|2 (3.21)

= 2〈dρ(∆u) − Π(du, du), ρ(u)〉+ 2|∇ρ(u)|2 from (3.10) (3.22)

= 2〈dρ(∆u) − (dρ + dπ)Π(du, du), ρ(u)〉+ 2|∇ρ(u)|2 (3.23)

= 2〈dρ(∆u − Π(du, du)), ρ(u)〉+ 2|∇ρ(u)|2. (3.24)

From (3.14), we get

∂φ

∂t
= ∆φ − 2|∇ρ(u)|2. (3.25)

Green’s theorem yields, for each t ∈ (0, T ),

d

dt

∫

M

φ(·, t)dµg =

∫

M

∂φ

∂t
(·, t)dµg = −2

∫

M

|∇ρ(u)|2dµg ≤ 0. (3.26)

Therefore,

0 ≤

∫

M

φ(·, t) ≤

∫

M

φ(·, 0) = 0 since φ(·, t) = 0 (3.27)

implying that φ(x, t) ≡ 0. Therefore u(M × [0, T )) ⊂ i(N) as required.

Next we verify that u is also solution of the first initial value problem (3.3). Let

u : M × [0, T ) → N be a map and set ũ = i ◦ u. We want to show that if (ũ) :

M × [0, T ) → i(N) is solution to the initial value problem (3.6), then u is a solution to
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the initial value problem (3.3). Hence from the footnote on the first part of the proof, we

get

∆ũ = trace∇di(du, du) + di(τ(u)), (3.28)

trace∇di = trace∇dπ(di, di) + dπ(trace∇di) since i = π ◦ i. (3.29)

Since i : N → R
q is an isometric embedding, noting that trace∇di ∈ Γ(i−1TR

q)

is orthogonal to i(N) at each point, we get dπ(trace∇di) = 0. Therefore, we get

trace∇di = trace∇dπ. Substituting this in (3.28), we get

di(τ(u)) = ∆ũ − trace∇dπ(dũ, dũ) = ∆ũ − Π(dũ, dũ) from (3.10). (3.30)

On the other hand, since di
(

∂u
∂t

)

= ∂ũ
∂t

, and assuming (3.6) holds for ũ, we have

di

(

τ(u) −
∂u

∂t

)

=

(

∆ −
∂

∂t

)

ũ − Π(ũ, ũ) = 0. (3.31)

Therefore, u is a solution of the initial value problem (3.3) as required.

The converse is clear from (3.30).

From this, we see that we can get a time-dependent local solution to the initial value

problem (3.3) by constructing a time-dependent local solution to the initial value prob-

lem (3.6). Since the new system of equations (3.6) is a system of parabolic differential

equations with regard to the (Euclidean) vector valued functions, it is relatively easy to

discuss the existence of solutions to this problem.

Theorem 3.1.3. Let (M, g) and (N, h) be compact Riemannian manifolds. For any

C2+α map f ∈ C2+α(M, N), there exists a positive number ǫ = ǫ(M, N, f, α) > 0 and

u ∈ C2+α,1+α/2(M × [0, ǫ], Ñ) such that u is a solution in M × [0, ǫ) to the initial value

problem (3.6).
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Proof. Step 1 (Construction of an approximate solution). We linearlize the problem and

construct an approximate solution. First by identifying f with i ◦ f , we consider the

following initial value problem.















(∆ − ∂
∂t

)v(x, t) = Π(f)(df, df)(x), (x, t) ∈ M × (0, 1),

u(x, 0) = f(x).

(3.32)

Note that in the first equation, we have Π(f) instead of Π(v). This is a linear system of

equations. By assumption on f , we get

f ∈ C2+α(M, Rq), Π(f)(df, df) ∈ Cα(M, Rq), (3.33)

and therefore, there exists a unique solution v ∈ C2+α,1+α/2(M × [0, 1], Rq) to (3.32)

from the theory of linear PDEs (Theorem A.2.2 in Appendix A.1). Denote the desired

solution by u. Then v approximates u at t = 0 in the following sense.

v(x, 0) = u(x, 0),
∂v(x, 0)

∂t
|t=0 =

∂u(x, t)

∂t
|t=0. (3.34)

Step 2 (Application of the inverse function theorem). Set Q = M × [0, 1] and

consider a differential operator

P (u) = ∆u −
∂

∂t
u − Π(u)(du, du). (3.35)

A map u ∈ C2+α,1+α/2(M × [0, ǫ], Rq) satisfying P (u) = 0 is the desired solution.
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Now for 0 < α′ < 1, we define the subspaces X and Y in C2+α,1+α/2(Q, Rq) and

Cα′,α′/2(Q, Rq), respectively, as follows:

X = {z ∈ C2+α′,1+α′/2(Q,Rq)|z(x, 0) = 0,
∂z(x, t)

∂t
= 0} (3.36)

Y = {k ∈ Cα′,α′/2(Q,Rq)(Q, Rq)|k(x, 0) = 0}. (3.37)

From the definitions, X and Y are closed subspaces of Banach spaces C2+α′,1+α′/2 and

Cα′,α′/2 and therefore are Banach spaces. For a given z ∈ X , if we put

P(z) = P (v + z) − P (v), (3.38)

where P is as defined above, then P defines a map P : X → Y (since z ∈

C2+α,1+α2(Q, Rq), P(z) ∈ Cα,α2(Q, Rq)). In particular P(0) = 0. P is Fréchet dif-

ferentiable in a neighborhood of z = 0 with the Fréchet derivative at z = 0 given by

P ′(0)(Z) = ∆Z −
∂

∂t
Z −

q
∑

A=1

ZA ∂

∂zA
Π(v)(dv, dv)− 2Π(v)(dv, dZ). (3.39)

From this, we can see that P ′(0) is an isomorphism. In fact, since v ∈

C2+α′,1+α′/2(Q, Rq), we see that for any K ∈ Y , there exists a unique Z ∈

C2+α′,1+α′/2(Q, Rq) such that















(P ′(0))(Z)(x, t) = K(x, t), (x, t) ∈ M × (0, 1),

Z(x, 0) = 0.

(3.40)

with |Z|
(2+α′,1+α′/2)
Q ≤ C|K|

α′,α′/2
Q from the theory of PDEs (Theorem A.2.2 in

Appendix A.1. Since K(x, 0) = 0 and Z(x, 0) = 0 holds, we have that ∂
∂t

Z = 0
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holds; consequently, Z ∈ X . This tells us that P ′(0) is surjective. Also P ′(0) has a

continuous inverse map as argued. Hence P ′(0) is an isomorphism.

Applying inverse function theorem for Banach spaces2 , P : X → Y is a home-

omorphism between sufficiently small neighborhood U of 0 ∈ X and a neighborhood

P(U) of 0 ∈ Y . In other words, there exists a positive number δ = δ(M, N, f) > 0 such

that there exists a unique z ∈ C2+α′,1+α′/2(Q, Rq) satisfying the following conditions

for any k ∈ Cα′,α′/2 with k(x, 0) = 0 and |k|
α′,α′/2
Q < δ, z satisfies

P(z) = k, z(x, 0) = 0,
∂z(x, t)

∂t

∣

∣

∣

t=0
= 0. (3.41)

Here δ = δ(M, N, f). Now if we set u = v + z and w = P (v), from (3.41), we see

that there exists a u ∈ C2+α′,1+α′/2(Q, Rq) satisfying















P (u)(x, t) = (w + k)(x, t), (x, t) ∈ M × (0, 1)

u(x, 0) = f(x).

(3.42)

Step 3 (Existence of a time-dependent local solution) In order to prove the existence

of the desired time dependent solution, for a given positive number ǫ, consider a C∞

function ζ : R → R satisfying ζ(t) = 1 (t ≤ ǫ),ζ(t) = 0 (t ≥ 2ǫ), 0 ≤ ζ(t) ≤ 1,

|ζ ′(t)| ≤ 2/ǫ (t ∈ R). We note that w = P (v) ∈ Cα,α/2(Q, Rq) and that w(x, 0) = 0

2(Inverse function theorem for Banach spaces): Let V and W be Banach spaces. Given an open

neighborhood U of 0 ∈ V , let f : U → W be a map from U into W satisfying the following conditions:

i f(0) = 0 and f is Fréchet differentiable in U .

ii f is C1 in Fréchet sense;

iii f ′(0) : V → W is a homeomorphism; namely, f ′(0) is bijective and f ′(0) and its inverse map f ′(0)−1

are both bounded linear operators

Then there exists an open neighborhood V ⊂ U of 0 ∈ U such that f is a homeomorphism from V onto

an open neighborhood f(V ) of 0 ∈ W .
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holds from the definition of P (v) and v(x, 0) = f . By computation, we can show that

there is a constant C > 0, independent of ǫ and w such that

|ζw|
(α′,α′/2)
Q ≤ Cǫ(α−α′)/2|w|

(α,α/2)
Q (3.43)

holds.

Set k = −ζw. Then K(x, 0) = 0. From (3.43), we have |k|
2+α′,1+α′/2
Q < δ for ǫ

small enough. Consequently, there exists a u ∈ C2+α′,1+α′/2(M × [0, ǫ], Rq) such that

the following special case of (3.42) holds:















P (u)(x, t) = 0, (x, t) ∈ M × (0, ǫ)

u(x, 0) = f(x).

(3.44)

Namely, we have obtained a solution u ∈ C2+α′,1+α′/2(M×[0, ǫ], Rq) to the initial value

problem














(∆ − ∂
∂
)u(x, t) = Π(u)(du, du), (x, t) ∈ M × (0, ǫ)

u(x, 0) = f(x).

(3.45)

Since we have

f ∈ C2+α(M, Rq), Π(u)(du, du) ∈ Cα,α/2(M × [0, ǫ], Rq), (3.46)

we see from the theory of PDEs (Theorem A.2.2 in Appendix A.1) that u ∈

C2+α,1+α/2(M × [0, ǫ], Rq). Since u(M × [0, ǫ′]) ⊂ Ñ for sufficiently small ǫ′ such

that 0 < ǫ′ < ǫ, u is a solution to the initial value problem (3.6) in M × [0, ǫ′]. Applying

Proposition 3.1.2, we see that u is a solution to (3.6) in M × [0, ǫ]. Clearly, ǫ is a positive

number depending on M, N, f and α alone.
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From the above theorem and Proposition 3.1.2, we get

Corollary 3.1.1. Let (M, g) and (N, h) be compact Riemannian manifolds. For a given

C2+α map f ∈ C2+α(M, N), there exist a positive number T = T (M, N, f, α) > 0 and

u ∈ C2+α,1+α/2(M × [0, T ], N) such that















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0, T ),

u(x, 0) = f(x)

(3.47)

holds. Here, T = T (M, N, f, α) is a constant dependent on M, N, f, α alone.

From the results given in Appendix A.1 regarding differentiability on the local solu-

tions to a linear parabolic differential equation, we obtain

Theorem 3.1.4 (Existence of time-dependent local solutions). Let (M, g) and (N, h)

be compact Riemannian manifolds. For a given C2+α map f ∈ C2+α(M, N), there

exists a positive number T = T (M, N, f, α) > 0 and u ∈ C2+α,1+α/2(M × [0, T ], N)∩

C∞(M × (0, T ), N) such that















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0, T ),

u(x, 0) = f(x)

(3.48)

holds. Here T = T (M, N, f, α) is a constant dependent on M, N, f and α alone.

Proof. Due to the Corollary 3.1.1, we only need to verify the differentiability of u at

each point (x, t) ∈ M × (0, T ). In the local coordinates as before, we express the

parabolic equation for harmonic maps as

(

∆ −
∂

∂t

)

uα = −

m
∑

i,j=1

n
∑

β,γ=1

gijΓ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj
. (3.49)
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From the previous corollary about u, the right hand side is C1+α,α/2. From the theo-

rem regarding differentiability of solutions to linear parabolic PDEs (Theorem A.2.2 in

Appendix A.1), we get that u is C3+α,1+α/2. This makes right hand side C2+α,1+α/2

yielding u to be C4+α,1+α/2 Repeating this argument, we get the desired result.

3.2 Existence of Global Time-Dependent Solutions

To show the existence of the global solution, we want to show that the initial value

problem of the parabolic equation of the harmonic maps















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0, T ),

u(x, 0) = f(x)

(3.50)

has a solution u : M × [0,∞) → N when T = ∞. Such a solution is called time-

dependent global solution. As we saw in the previous section, time dependent local

solution always exists. However, (3.50) is a system of non-linear equations; hence exis-

tence of a global solution is not guaranteed. We need to estimate growth rate of the

solution u(x, t) in time t. Here, the curvature of N plays a crucial role. We assume

throughout that M and N are compact. Following lemma is a useful tool.

Lemma 3.2.1 (Maximum principle). Let u ∈ C0(M × [0, T ))∩C2,1(M × (0, T )) be a

real valued function in M × [0, T ). If u satisfies (∆ − ∂/∂t)u ≥ 0 in M × (0, T ), then

max
M×[0,T ]

u = max
M×{0}

u (3.51)

holds; namely the maximum value of u in M × [0, T ) is attained at a point in M × {0}.
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Proof. Let ǫ1, ǫ2 > 0 be positive, and set

û(x, t) = u(x, t) − ǫ1t, Q = M × [0, T − ǫ2]. (3.52)

Since û is a continuous function in Q, it attains the maximum value at point (xo, yo) in

Q due to compactness. We claim that to = 0. Assume that to > 0 and we try to get a

contradiction. Since (∆ − ∂/∂t)u ≥ 0 in M × (0, T ), from the assumption, û satisfies

∂û

∂t
≤ ∆û − ǫ1 ∀(x, t) ∈ Q (3.53)

in particular at (xo, to). Namely, in local coordinates (xi) about xo,

∂û

∂t
≤

m
∑

i,j=1

gij

{

∂2û

∂xi∂xj
−

m
∑

k=1

∂û

∂xk

}

− ǫ1 (3.54)

holds at (xo, yo). But by assumption, (xo, yo) is maxima, and hence

∂û

∂t
(xo, to) = 0,

∂û

∂xi
(xo, to) = 0 (3.55)

and the matrix ∂2û
∂xi∂xj (x

o, yo) is nonpositive definite. Substituting this in (3.54), we see

that ǫ ≤ 0 which contradicts the assumption that it is positive. This proves the assertion

that to = 0 and the assertion is true for û. Noting that ǫ1 and ǫ2 were arbitrary, we obtain

the desired result.

Next we use Weizenböck formula to get the following estimate on rate of growth of

u.

Proposition 3.2.2. Let u ∈ C2,1(M × [0, T ), N)∩C∞(M × (0, T ), N) be a solution to

(3.50) and set ut(x) = u(x, t). Assume that N has nonpositive curvature KN ≤ 0 and
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RicM ≥ −Cg for a constant C ∈ R. Furthermore, let ǫ be a positive number such that

0 < ǫ < T . Then the following holds for the energy density functional e(u) of u:

1. For an arbitrary (x, t) ∈ M × (0, T ),

e(ut)(x) ≤ e2Ct sup
x∈M

e(f)(x). (3.56)

2. For an arbitrary (x, t) ∈ M × [ǫ, T ),

e(ut)(x) ≤ C(M, ǫ)E(f). (3.57)

Here C(M, t) is a constant dependent on only M and ǫ.

Proof. (1) From Corollary 2.2.2, we get

(

∆ −
∂

∂t

)

e(ut) ≥ −2Ce(ut) (3.58)

If we put v(x, t) = e−2Cte(ut), we see that from the above inequality, v satisfies (∆ −

∂/∂t)v ≥ 0 in M × (0, T ). hence from the maximum principle proved in Lemma 3.2.1,

e−2Cte(ut)(x) = v(x, t) ≤ max
x∈M

v(x, 0) = maxx∈Me(f)(x) (3.59)

holds for arbitrary (x, t) ∈ M × [0, T ). (2)Similarly computation.

The above proposition puts bounds on the rate at which the energy density functional

decreases. Another important bound on rate of growth of the solution is given in the

following proposition.
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Proposition 3.2.3. Let u ∈ C2,1(M × [0, T ), N)∩C∞(M × (0, T ), N) be a solution to

(3.32). If N is of nonpositive curvature KN ≤ 0, at any (x, t), we have

∣

∣

∣

∣

∂u

∂t
(x, t)

∣

∣

∣

∣

≤ sup
x∈M

∣

∣

∣

∣

∂u

∂t
(x, 0)

∣

∣

∣

∣

. (3.60)

Proof. From corollary to the Weizenböck inequality Corollary 2.2.2, we have

(

∆ −
∂

∂t

)

κ(ut) ≥ 0 (3.61)

for ut(x) = u(x, t). Since by definition κ(ut) = 1
2

∣

∣

∣

∂u(x,t)
∂t

∣

∣

∣

2

, we get the desired result

from the maximum principle Lemma 3.2.1.

From Propositions 3.2.2 and 3.2.3, we can get that the growth rate of a solution u

to the initial value problem (3.32) is uniformly bounded with respect to time, if KN

curvature of N is nonpositive.

Theorem 3.2.4 (Existence of time-dependent global solutions). Let (M, g) and (N, h)

be compact Riemannian manifolds, and assume that N is of non-positive curvature

KN ≤ 0. Then for any C2+α map f ∈ C2+α(M, N), there exists a unique u ∈

C2+α,1+α/2(M × [0,∞), N) ∩ C∞(M × (0,∞), N) such that















∂u
∂t

(x, t) = τ(u(x, t)), (x, t) ∈ M × (0,∞),

u(x, 0) = f(x)

(3.62)

holds.

Proof. We have seen in Theorem 3.1.4 that a time-dependent local solution to problem

(3.62) exists. Namely, there exists a positive number T = T (M, N, f, α) > 0 such

that, regardless of the curvature of N , the initial value problem (3.62) has a solution
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u ∈ C2+α,1+α/2(M × [0,∞), N) ∩ C∞(M × (0,∞), N). Now we claim that if N is of

nonpositive curvature KN ≤ 0, then this solution u can be extended to M × [0,∞). Let

T0 = sup{t ∈ [0,∞) | (3.62) has a solution}. (3.63)

We will show that T0 = ∞. Assume T0 < ∞, and let ti be a sequence converging to

T0. By the Nash embedding theorem, we can consider N to be a submanifold of some

Euclidean space Rq. Therefore, we can regard each u(·, ti) ∈ C∞(M, N) as a vector

valued function u : M → R
q. We see that for 0 < α < α′ < 1, the sequence of functions

{u(·, ti)} and {∂u(·,t)
∂t

} form uniformly bounded subsets in the function spaces C2+α′

and Cα′

(M, Rq), respectively. Hence, these sequences become, respectively, uniformly

bounded and continuous subsets in the function spaces C2+α(M, Rq) and Cα(M, Rq).

By the Ascoli-Arzelà theorem, there exists a subsequence {tik} of {ti} and functions

u(·, T0) ∈ C2+α(M, Rq) and
∂u(·, T0)

∂t
∈ Cα(M, Rq) (3.64)

such that the subsequences {u(·, tik)} and {
∂u(·,tik )

∂t
)} respectively, converge to u(·, T0)

and
∂u(·,T0)

∂t
, as tik → T0. Since we have

∂u(·,tik )

∂t
= τ(u(·, t(ik))). Therefore due to

uniform convergence, we also get at T0,
∂u(·,T0)

∂t
= τ(u(·, T0)). Thus we see that (3.62)

has a solution in M × [0, T0]. By applying Theorem 3.1.4 on local time-dependent

solution, with u(·, T0) as an initial value, we can extend the solution u ∈ [0, T0] to

u ∈ [0, T0 + ǫ) for some ǫ > 0. This contradicts the definition of T0. Thus T0 = ∞.

This concludes the proof of global existence and hence proves the Eells Sampson

theorem.
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Appendix A

Hölder Spaces and Some Results on

PDEs

In this chapter we state some of the results we used without proof.

A.1 Hölder Spaces

Given T > 0, let Q = M × [0, T ]. Let 0 < α < 1. Given a vector valued function

u : Q → R
q, set

|u|Q = sup
(x,t)∈Q

|u(x, t)|, (A.1)

〈u〉(α)
x = sup

(x,t),(x′,t)∈Q x 6=x′

|u(x, t) − u(x′, t)|

d(x, x′)α
(A.2)

〈u〉
(α)
t = sup

(x,t),(x,t′)∈Q t6=t′

|u(x, t) − u(x, t′)|

|t − t′|α
(A.3)

where d(x, x′) is the distance between x and x′ in M . Using these norms, we define the

norms |u|
(α,α/2)
Q , |u|

(2+α,1+α/2)
Q by

|u|
(α,α/2)
Q = |u|Q + 〈u〉(α)

x + 〈u〉(α/2)
x , (A.4)

|u|(2+α,1+α/2) = |u|Q + |
∂u

∂t
|Q + |Dxu|Q + |D2

xu|Q + 〈
∂u

∂t
〉
(α/2)
t (A.5)

+ 〈Dxu〉
(1/2+α/2)
t + 〈D2

xu〉
(α/2)
t (A.6)

+ 〈
∂u

∂t
〉(α)
x + 〈D2

xu〉
(α)
x . (A.7)
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Here Dx and D2
x denote the first order derivative and its covariant derivative, namely

Dxu = du =

m
∑

i=1

q
∑

α=1

∂uα

∂xi
· dxi ⊗

∂

∂yα
, (A.8)

D2
xu = ∇du =

m
∑

i,j=1

q
∑

α=1

∇i∇ju
α · dxi ⊗ dxj ⊗

∂

∂yα
. (A.9)

Norm on these is defines by,

|Dxu|
2
Q = sup

(x,t)∈M

m
∑

i,j=1

q
∑

α=1

gij ∂uα

∂xi

∂uα

∂xj
, (A.10)

|D2
xu|

2
Q = sup

(x,t)∈M

m
∑

i,j,k,l=1

q
∑

α=1

gikgjl∇i∇ju
α∇k∇lu

α. (A.11)

Given non-negative integers κ and α, the set of all Cκ continuous functions u : Q → R

whose κ-th partial derivatives are α-Hölder-continuous is denoted by Cκ+α(Q̄) and is

called Hölder space. The Hölder space Cκ+α(Q̄) becomes a Banach space under the

norm

|u|κ+α =
∑

|β|≤κ

sup
Q

|Dβu| +
∑

|β|=κ

〈Dβu〉αQ. (A.12)

where β denote multi-index. Set

Cκ+α(Q) = {u ∈ Cκ(Q)| |u|κ+α
Q < ∞}.
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With respect to these norms and function spaces, we define the function spaces

Cα,α/2(Q, Rq) and C2+α,1+α/2(Q, Rq), respectively, by

Cα,α/2(Q, Rq) = {u ∈ C0(M × [0, T ])| |u|
(α,α/2)
Q < ∞}, (A.13)

C2+α,1+α/2(Q, Rq) = {u ∈ C2,1(M × [0, T ])| |u|
(2+α,1+α/2)
Q < ∞}, (A.14)

C2+α,1+α/2(Q, N) = {u ∈ C2+α,1+α/2(M × [0, T ])| u(Q) ⊂ N}. (A.15)

Cα,α/2(Q, Rq) and C2+α,1+α/2(Q, Rq) are Banach spaces with norms |u|
α,α/2
Q ,

|u|
2+α,1+α/2
Q , respectively. Also it can be shown that C2+α,1+α/2(Q, N) is a closed subset

of C2+α,1+α/2(Q, Rq). Cα,α/2(Q, Rq) and C2+α,1+α/2(Q, Rq) are called a Hölder space

on Q = M × [0, T ].

A.2 Some Results on PDEs

Let Ω ∈ R
m be a bounded and connected open set, and let P be a linear elliptic partial

differential operator given by

P =

m
∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

m
∑

i=1

bi(x)
∂

∂xi
+ d(x). (A.16)

Theorem A.2.1. (1) Given 0 < α < 1, assume that aij , bi, d, f ∈ Cα(Ω). Then u ∈

C2+α(Ω) if u ∈ C2(Ω) satisfies a linear elliptic partial differential equation Pu(x) =

f(x). (2) Furthermore, if aij , bi, d, f ∈ Cκ+α(Ω) for given κ ≥ 1, then the solution u to

(1) is Cκ+α+2. In particular if aij, bi, d, f ∈ C∞(Ω), then u ∈ C∞(M).
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Theorem A.2.2. Let (M, g) be a compact Riemannian manifold, and set Q = M ×

[0, T ]. Given a vector valued function u : Q → R
q, let

Lu = ∆u + ~a · ∇u +~b · u −
∂

∂t
u (A.17)

be a parabolic partial differential operator, and consider an initial value problem















Lu(x, t) = F (x, t), (x, t) ∈ M × (0, T )

u(x, 0) = f(x).

(A.18)

Here, the components of ∆u,~a · ∇u,~b · u, ∂
∂t

u are defined by

∆uA,

q
∑

B=1

m
∑

i=1

aiA
B (x, t)

∂uB

∂xi
,

q
∑

B=1

bA
B(x, t)uB,

∂uB

∂t
. (A.19)

If aiA
B , bA

B ∈ Cα,α/2(Q, R), 1 ≤ m, 1 ≤ A, B ≤ q, for some 0 < α < 1, then, for any

F ∈ Cα,α/2(Q, R), f ∈ C2+α(M, Rq), (A.20)

there exists a unique solution u ∈ C2+α,1+α/2(Q, Rq) to (A.18) such that

|u|
(2+α,1+α/2)
Q ≤ C(|F |

(α,α/2)
Q + |f |

(2+α)
M ) (A.21)

holds. Here C = C(M, L, q, T, α) is a constant dependent on M, L, q, T, α alone.
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A.3 Fréchet Derivative

Definition A.3.1. Let X and Y be normed linear spaces, U ∈ X open, f : X → Y

and x ∈ U . Then we say f is Fréchet differentiable at x if there is a bounded linear

A ∈ B(X, Y ) such that

lim
h→0

‖f(x + h) − f(x) − Ah‖Y

‖h‖X
= 0. (A.22)

We call A the Fréchet derivative of f at x and denote it by f ′(x) = Df(x).

Proposition A.3.1. If f is Fréchet differentiable at x, then f ′(x) = Df(x) is unique

and f is continuous at x.
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